Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1118721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283745

RESUMO

Introduction: Toll-like receptors (TLRs) are an extensive group of proteins involved in host defense processes that express themselves upon the increased production of endogenous damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) due to the constant contact that airway epithelium may have with pathogenic foreign antigens. We have previously shown that COPD-like airway inflammation induced by exposure to an aerosolized lysate of nontypeable Haemophilus influenzae (NTHi) promotes tumorigenesis in a K-ras mutant mouse model of lung cancer, CCSPCre/LSL-K-rasG12D (CC-LR) mouse. Methods: In the present study, we have dissected the role of TLRs in this process by knocking out TLR2, 4, and 9 and analyzing how these deletions affect the promoting effect of COPD-like airway inflammation on K-ras-driven lung adenocarcinoma. Results: We found that knockout of TLR 2, 4, or 9 results in a lower tumor burden, reduced angiogenesis, and tumor cell proliferation, accompanied by increased tumor cell apoptosis and reprogramming of the tumor microenvironment to one that is antitumorigenic. Additionally, knocking out of downstream signaling pathways, MyD88/NF-κB in the airway epithelial cells further recapitulated this initial finding. Discussion: Our study expands the current knowledge of the roles that TLR signaling plays in lung cancer, which we hope, can pave the way for more reliable and efficacious prevention and treatment modalities for lung cancer.


Assuntos
Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , NF-kappa B/metabolismo , Receptor 2 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Neoplasias Pulmonares/patologia , Inflamação/complicações , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores Toll-Like/metabolismo , Epitélio/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Microambiente Tumoral
2.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471938

RESUMO

K-ras-mutant lung adenocarcinoma (KM-LUAD) is associated with abysmal prognosis and is tightly linked to tumor-promoting inflammation. A human mAb, canakinumab, targeting the proinflammatory cytokine IL-1ß, significantly decreased the risk of lung cancer in the Canakinumab Anti-inflammatory Thrombosis Outcomes Study. Interestingly, we found high levels of IL-1ß in the lungs of mice with K-rasG12D-mutant tumors (CC-LR mice). Here, we blocked IL-1ß using an anti-IL-1ß mAb in cohorts of 6- or 14-week-old CC-LR mice to explore its preventive and therapeutic effect, respectively. IL-1ß blockade significantly reduced lung tumor burden, which was associated with reprogramming of the lung microenvironment toward an antitumor phenotype characterized by increased infiltration of cytotoxic CD8+ T cells (with high IFN-γ and granzyme B expression but low programmed cell death 1 [PD-1] expression) while suppressing neutrophils and polymorphonuclear (PMN) myeloid-derived suppressor cells. When querying the Cancer Genome Atlas data set, we found positive correlations between IL1B expression and infiltration of immunosuppressive PMNs and expression of their chemoattractant, CXCL1, and PDCD1 expressions in patients with KM-LUAD. Our data provide evidence that IL-1ß blockade may be a preventive strategy for high-risk individuals and an alternative therapeutic approach in combination with currently available treatments for KM-LUAD.


Assuntos
Adenocarcinoma de Pulmão , Anticorpos Monoclonais Humanizados , Interleucina-1beta , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Citocinas/biossíntese , Citocinas/imunologia , Genes ras , Humanos , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Camundongos , Terapia de Alvo Molecular , Mutação , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Microambiente Tumoral
3.
Methods Mol Biol ; 2435: 203-214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34993949

RESUMO

Lung cancer is the second most common cancers in the world and remains as the cancer with the highest incidence of death (Siegel et al. CA Cancer J Clin 71(1):7-33, 2021). K-RAS mutation is one of the most common mutations in non-small-cell lung cancer (NSCLC), encompassing 15-30% of lung adenocarcinomas (Cancer Genome Atlas Research Network. Nature 511:543-550, 2014). In this chapter, we describe various murine models with the goal of studying the role of inflammation in development and promotion of lung cancer. Immunomodulatory strategies are described in detail as well as the protocols that follow the intervention for harvesting various tissue and fluids for immune-profiling.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenocarcinoma/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Modelos Animais de Doenças , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mutação
4.
Carcinogenesis ; 41(11): 1529-1542, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32603404

RESUMO

K-ras mutant lung adenocarcinoma (LUAD) is the most common type of lung cancer, displays abysmal prognosis and is tightly linked to tumor-promoting inflammation, which is increasingly recognized as a target for therapeutic intervention. We have recently shown a gender-specific role for epithelial Stat3 signaling in the pathogenesis of K-ras mutant LUAD. The absence of epithelial Stat3 in male K-ras mutant mice (LR/Stat3Δ/Δ mice) promoted tumorigenesis and induced a nuclear factor-kappaB (NF-κB)-driven pro-tumor immune response while reducing tumorigenesis and enhancing anti-tumor immunity in female counterparts. In the present study, we manipulated estrogen and NF-κB signaling to study the mechanisms underlying this intriguing gender-disparity. In LR/Stat3Δ/Δ females, estrogen deprivation by bilateral oophorectomy resulted in higher tumor burden, an induction of NF-κB-driven immunosuppressive response, and reduced anti-tumor cytotoxicity, whereas estrogen replacement reversed these changes. On the other hand, exogenous estrogen in males successfully inhibited tumorigenesis, attenuated NF-κB-driven immunosuppression and boosted anti-tumor immunity. Mechanistically, genetic targeting of epithelial NF-κB activity resulted in reduced tumorigenesis and enhanced the anti-tumor immune response in LR/Stat3Δ/Δ males, but not females. Our data suggest that estrogen exerts a context-specific anti-tumor effect through inhibiting NF-κB-driven tumor-promoting inflammation and provide insights into developing novel personalized therapeutic strategies for K-ras mutant LUAD.


Assuntos
Adenocarcinoma de Pulmão/imunologia , Transformação Celular Neoplásica/imunologia , Estrogênios/metabolismo , Imunomodulação , Neoplasias Pulmonares/imunologia , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Humanos , Imunidade/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Mutação , NF-kappa B/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Fator de Transcrição STAT3/genética , Células Tumorais Cultivadas
5.
Front Oncol ; 9: 1556, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039025

RESUMO

Kirsten rat sarcoma viral oncogene (K-ras) is a well-documented, frequently mutated gene in lung cancer. Since K-ras regulates numerous signaling pathways related to cell survival and proliferation, mutations in this gene are powerful drivers of tumorigenesis and confer prodigious survival advantages to developing tumors. These malignant cells dramatically alter their local tissue environment and in the process recruit a powerful ally: inflammation. Inflammation in the context of the tumor microenvironment can be described as either antitumor or protumor (i.e., aiding or restricting tumor progression, respectively). Many current treatments, like immune checkpoint blockade, seek to augment antitumor inflammation by alleviating inhibitory signaling in cytotoxic T cells; however, a burgeoning area of research is now focusing on ways to modulate and mitigate protumor inflammation. Here, we summarize the interplay of tumor-promoting inflammation and K-ras mutant lung cancer pathogenesis by exploring the cytokines, signaling pathways, and immune cells that mediate this process.

6.
Oncotarget ; 9(68): 32972-32983, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30250643

RESUMO

Chronic obstructive pulmonary disease (COPD), an inflammatory disease of the lung, is an independent risk factor for lung cancer. Lung tissues obtained from human smokers with COPD and lung cancer demonstrate hypoxia and up-regulated hypoxia inducible factor-1 (HIF-1). HIF-1 activation is the central mechanism for controlling the cellular response to hypoxia during inflammation and tumor development. These facts suggest a link between COPD-related airway inflammation, HIF-1, and lung cancer. We have previously established a mouse model of COPD-like airway inflammation that promotes lung cancer in a K-ras mutant mouse model (CC-LR). Here we show that tumors in the CC-LR model have significantly elevated levels of HIF-1α and HIF-1 activity. To determine the tumor-promoting functions of HIF-1 in CC-LR mice, the gene Hif1a which encodes HIF-1α and is required for HIF-1 activity, was disrupted in the lung epithelium of CC-LR animals. Airway epithelial specific HIF-1α deficient mice demonstrated significant reductions in lung surface tumor numbers, tumor angiogenesis, and tumor cell proliferation in the absence or presence of COPD-like airway inflammation. In addition, when CC-LR mice were bred with transgenic animals that overexpress a constitutively active mutant form of human HIF-1α in the airway epithelium, both COPD- and adenocarcinoma-like phenotypes were observed. HIF-1α overexpressing CC-LR mice had significant emphysema, and they also showed potentiated tumorigenesis, angiogenesis, and cell proliferation accompanied by an invasive metastatic phenotype. Our gain and loss of function studies support a key role for HIF-1α in the promotion of lung cancer by COPD-like inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA